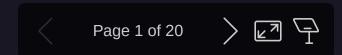
Parallel Joinable B-Tree in Fork-Join I/O Model

Michael T. Goodrich, Yan Gu, Ryuto Kitagawa, Yihan Sun ISAAC 2025 December 9, 2025



• Binary Fork Join Model

- Binary Fork Join Model
 - Assume each processor shares memory

- Binary Fork Join Model
 - Assume each processor shares memory
 - Threads may perform a *fork* operation

- Binary Fork Join Model
 - Assume each processor shares memory
 - Threads may perform a *fork* operation
 - Later performs a *join* operation for sync

• Represent algorithm's computation as a DAG

- Represent algorithm's computation as a DAG
 - Each node represents tasks, each edge is a dependency

- Represent algorithm's computation as a DAG
 - Each node represents tasks, each edge is a dependency
- Work: Total number of nodes in the graph

- Represent algorithm's computation as a DAG
 - Each node represents tasks, each edge is a dependency
- Work: Total number of nodes in the graph
- Span: Longest path within the graph

Modern computers typically bottlenecked by memory accesses

- Modern computers typically bottlenecked by memory accesses
 - Captured sequentially by the External Memory Model

- Modern computers typically bottlenecked by memory accesses
 - Captured sequentially by the External Memory Model
 - PRAM has the parallel equivalent, **PEM**

- Modern computers typically bottlenecked by memory accesses
 - Captured sequentially by the External Memory Model
 - PRAM has the parallel equivalent, **PEM**
 - Binary Fork Join model does not

• Natural extension of Binary Fork-Join Model

- Natural extension of Binary Fork-Join Model
 - All threads share external memory

- Natural extension of Binary Fork-Join Model
 - All threads share external memory
 - \circ Each thread may access a block of data $m{B}$ in a single memory access

- Natural extension of Binary Fork-Join Model
 - All threads share external memory
 - \circ Each thread may access a block of data $m{B}$ in a single memory access
 - \circ Each fork and join spawns and syncs at most $m{B}$ threads

• Join-based framework

- Join-based framework
 - Supports efficient set operations on search trees

- Join-based framework
 - Supports efficient set operations on search trees
 - Core operations are the Join and Split operations

- Join-based framework
 - Supports efficient set operations on search trees
 - Core operations are the Join and Split operations

• Multi-way cache efficient self-balancing tree

- Multi-way cache efficient self-balancing tree
- ullet Each node in the tree contains $oldsymbol{b}$ keys and $oldsymbol{b}+\mathbf{1}$ subtrees

- Multi-way cache efficient self-balancing tree
- ullet Each node in the tree contains $oldsymbol{b}$ keys and $oldsymbol{b}+\mathbf{1}$ subtrees

$$\circ \frac{B}{2} \leq b \leq B$$

- Multi-way cache efficient self-balancing tree
- ullet Each node in the tree contains $oldsymbol{b}$ keys and $oldsymbol{b}+\mathbf{1}$ subtrees

$$|a| \cdot \frac{B}{2} \leq b \leq B$$

• We seek to extend **Join** to **B-way Join**

- Multi-way cache efficient self-balancing tree
- ullet Each node in the tree contains $oldsymbol{b}$ keys and $oldsymbol{b}+\mathbf{1}$ subtrees

$$|a| \cdot \frac{B}{2} \leq b \leq B$$

- We seek to extend Join to B-way Join
 - Eventually develop *Multi-way Join*

General steps for the algorithm

- General steps for the algorithm
 - Grouping

- General steps for the algorithm
 - Grouping
 - Recurse and Subtree Replace

- General steps for the algorithm
 - Grouping
 - Recurse and Subtree Replace
 - Concatenate and Rebalance

B-Way-join on five keys and six B-trees. $h(T_2) = h(T_5) = h^* = \max_i h(T_i), B = 6.$

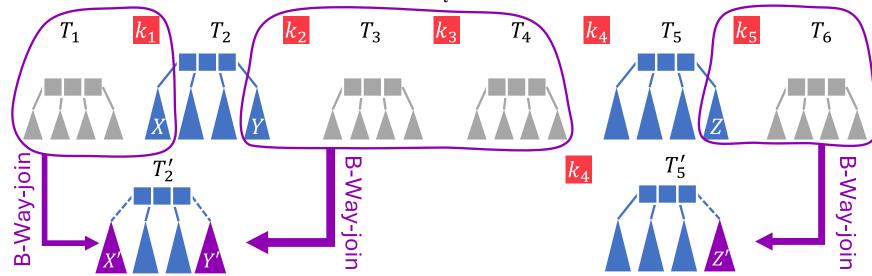
Input

Step 1

Group inputs by the tall trees

Step 2

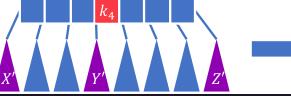
Recursively call Multi-join. Replace the left/right-most child of the tall trees



The purple trees have height $h^* - 1$ or height h^* (with one key at root). Note that T_2' and T_5' may not be strictly balanced at this point (X', Y') and Z' may be 1 level taller than other subtrees).

Step 3

Directly concatenate all (new) tall trees to the resulting tree & rebalance, based on Lemma 1



Resulting in a valid B-tree T with height h^* or $h^* + 1$; if T has height $h^* + 1$, then the root has at most |C| keys, where $C \subseteq \{X', Y', Z'\}$ contains all trees with height h^* .

Theorem 1

Let T_1,T_2,\ldots,T_{b+1} be a set of B-trees, with the largest tree height h_{\max} and the shortest tree height h_{\min} , and k_1,k_2,\ldots,k_b be a set of separator keys, where $b\leq B$. The *join* operation can be performed in $O(h_{\max}-h_{\min})$ I/O span and $O(b\cdot(h_{\max}-h_{\min}))$ I/O work.

Theorem 1

Let T_1,T_2,\ldots,T_{b+1} be a set of B-trees, with the largest tree height h_{\max} and the shortest tree height h_{\min} , and k_1,k_2,\ldots,k_b be a set of separator keys, where $b\leq B$. The *join* operation can be performed in $O(h_{\max}-h_{\min})$ I/O span and $O(b\cdot(h_{\max}-h_{\min}))$ I/O work.

Leads to a span-inefficient solution

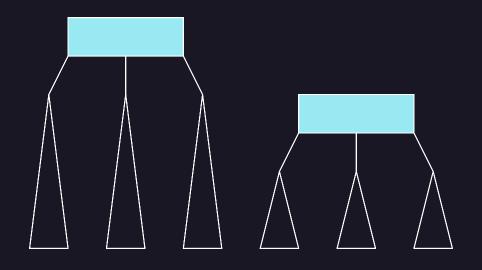
Theorem 1

Let T_1,T_2,\ldots,T_{b+1} be a set of B-trees, with the largest tree height h_{\max} and the shortest tree height h_{\min} , and k_1,k_2,\ldots,k_b be a set of separator keys, where $b\leq B$. The *join* operation can be performed in $O(h_{\max}-h_{\min})$ I/O span and $O(b\cdot(h_{\max}-h_{\min}))$ I/O work.

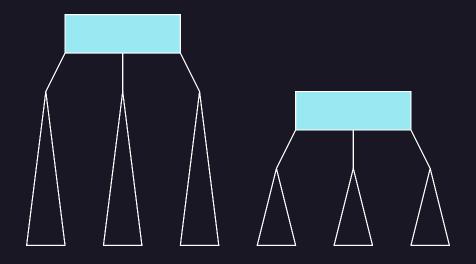
- Leads to a span-inefficient solution
- ullet Union with above primitive leads to I/O Span $O(\log_B^2 n)$

B-way Join Improved

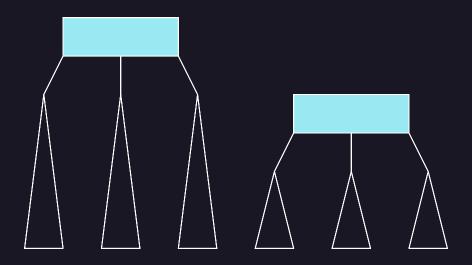
- Grouping
- Fuse within Groups
- Divide Large Nodes
- Divide Smaller Nodes
- Concatenate and Rebalance



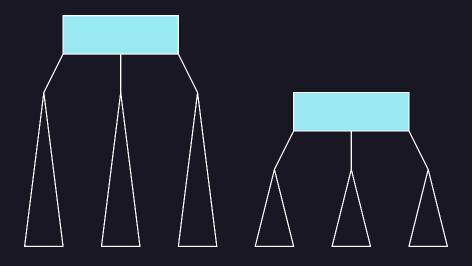
• Do not recurse into subgroups of tall trees



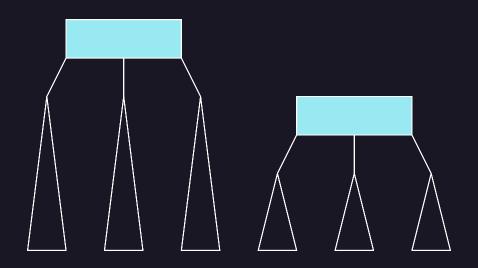
- Do not recurse into subgroups of tall trees
 - Fuse keys and nodes at their heights directly



- Do not recurse into subgroups of tall trees
 - Fuse keys and nodes at their heights directly
- Maintain list of pointers along the left and right spines



- Do not recurse into subgroups of tall trees
 - Fuse keys and nodes at their heights directly
- Maintain list of pointers along the left and right spines
- ullet Finding the node a root merges with takes $O(\log_B\log_B n)$ I/O span



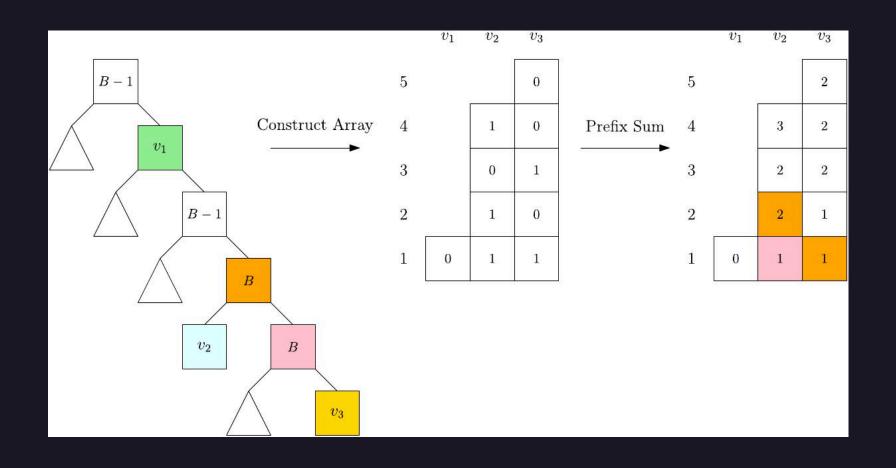
ullet Divide node if contains > B keys

- ullet Divide node if contains > B keys
 - \circ Any node contains at most B^2 keys

- ullet Divide node if contains > B keys
 - \circ Any node contains at most B^2 keys
- ullet After, each node contains at most ${f 2B}$ keys

- ullet Divide node if contains > B keys
 - \circ Any node contains at most B^2 keys
- ullet After, each node contains at most ${oldsymbol 2B}$ keys
 - Each subsequent dividing of nodes will push up at most 1 key

Dividing Smaller Nodes



Multi-way Join I/O Span and Work

Theorem 2

We can join T_1,\ldots,T_d B-trees and k_1,\ldots,k_d keys together in parallel with $O(\log_B d \cdot \log_2 \log_B n + \log_B n)$ I/O span and $O(d\log_B n)$ I/O work, where n is $\sum_{i=1}^d |T_i|$, in the Fork-Join I/O model.

Multi-way Split I/O Span and Work

Theorem 3

We can split a B-tree T by k_1,\ldots,k_d keys in parallel with $O(\log_B d + \log_B n)$ I/O span and $O(d\log_B n)$ I/O work, where n is $\sum_{i=1}^d |T_i|$, in the Fork-Join I/O Model.

• Divide each tree into $\sqrt{n+m}$ sections

• Divide each tree into $\sqrt{n+m}$ sections • Use the Multi-way Split operation

- Divide each tree into $\sqrt{n+m}$ sections • Use the Multi-way Split operation
- Perform a union on each pair of subtrees

- Divide each tree into $\sqrt{n+m}$ sections Use the Multi-way Split operation
- Perform a union on each pair of subtrees
- Use Multi-way Join to combine all elements in the tree

- Divide each tree into $\sqrt{n+m}$ sections
 - Use the Multi-way Split operation
- Perform a union on each pair of subtrees
- Use Multi-way Join to combine all elements in the tree
 - Minor modifications may be made to Multi-way Join to get Intersection and Difference operations

Theorem 4

Given two B-trees with sizes m and $n \geq m$, there exists a parallel algorithm that returns a new B-tree containing the union, intersection, and set difference of the two input trees in and $O\left(m\log_B\left(\frac{n}{m}\right)\right)$ I/O work, $O(\log_B m \cdot \log_2\log_B n + \log_B n)$ I/O span, where B is the block size.

ullet Turning $\mathbf{log_2}$ to $\mathbf{log}_{oldsymbol{B}}$

- ullet Turning $\mathbf{log_2}$ to \mathbf{log}_B
- Removing $\log \log$ factor entirely

- ullet Turning $\mathbf{log_2}$ to \mathbf{log}_B
- Removing $\log \log$ factor entirely
- Apply algorithm to adaptive sorting settings

- ullet Turning $oldsymbol{\log_2}$ to $oldsymbol{\log_B}$
- Removing log log factor entirely
- Apply algorithm to adaptive sorting settings
- Use Fork-Join I/O model on other algorithms

Thank you!