CompSci 260P: Week 10

Quiz 2: Solutions

Ryuto Kitagawa

University of California, Irvine

Problem Statement

- Purchase n items for corporate expansion
- ullet Each item costs \$P
 - \circ Item i increases in cost by $r_i>1$ factor each week
- Only buy **one** item each week
- To minimize the total cost of purchases:
 - \circ Sort items in decreasing order of r_i
 - Purchase items in that order
- Prove this is optimal

Approach to Problem

- Identify how much buying each item costs
 - $egin{array}{ll} \circ \ P \cdot r_i^k ext{ to buy item } i ext{ on week } k \end{array}$
 - $0 \le k < n$
- Consider what the solution is asking for
 - Order of picking elements
 - Similar to the Algorithmic Pizza problem!
- We will assume this similarity was **not** thought of

Approach to Problem

- Consider the Greedy solution compared to the OPT
 - \circ Greedy *always* picks the item with the lowest r first
 - \circ Let Greedy have picked r_i first and OPT have picked r_j
- ullet OPT picks r_j,\dots,r_i,\dots
- ullet Let's swap to r_i,\ldots,r_j,\ldots
 - How does this change the sum?

Compare Greedy vs Optimal

$$ext{ORG} = P + P \cdot r_i^k + E$$
 $ext{SWP} = P + P \cdot r_j^k + E$

- Which one is better?
- $ullet P \cdot r_i^k \stackrel{?}{>} P \cdot r_j^k$
- ullet Recall that $r_i>r_j,$ thus left-hand side is *larger*

Is This Proof Enough?

- Not quite enough!
- Logic only holds for swapping the first item!
 - We need to prove this holds for all swaps

Generalized Proof

$$egin{aligned} ext{ORG} &= P \cdot r_j^\ell + P \cdot r_i^k + E \ ext{SWP} &= P \cdot r_i^\ell + P \cdot r_j^k + E \end{aligned}$$

- Which one is better?
- $\left|ullet P\cdot r_i^{k-\ell}\stackrel{?}{>} P\cdot r_j^{k-\ell}
 ight|$
- Recall that $r_i > r_j,$ thus left-hand side is *larger* $\circ \; \ell < k$
- Generalizes to all swaps

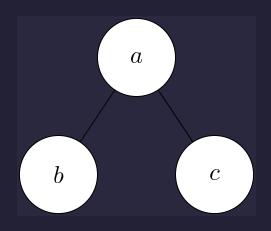
Problem Statement

- ullet We are given a complete binary tree T with $n=2^d-1$ vertices
 - Each node has a distinct value
- Find a "local minimum," i.e. a node that is lower than all adjacent nodes
 - \circ Use only $O(\log n)$ inspections of vertex values
- Crucial Information: Not necessarily sorted

Approach to Problem

- Start very simple by isolating a part of the problem
 - Consider just the root
 - \circ Checking if it is a local minimum takes O(1) time
- If not, we could recurse on both sides
 - \circ Leads to $T(n) = 2T(n/2) + O(1) = \Theta(n)$
 - Note: How do we know that the subproblem is exactly half?
- What if we could recurse to just one side?

Analyze Properties



- Suppose b < a < c
- Would c ever be a local minimum?
 - What if we just looked into the left branch?
- $T(n) = T(n/2) + O(1) = \Theta(\log n)$
- But is it correct?

Correctness

- Suppose we go to a node that is less than the current
 - Are we guaranteed to find a local minimum?
- Yes
 - Either we find one along the path
 - o Or we reach a leaf, which must be a local minimum!