CompSci 260P: Week 7

Greedy Algorithms

Ryuto Kitagawa

University of California, Irvine

Before We Begin

- Greedy algorithms make *greedy* choices
 - Making optimal decisions based on local information
- Recall in Dynamic Programming, we break the problem down into making a single choice
 - Dynamic programming looks at the choice and uses recursion to find the optimal
 - Greedy algorithms instead make the optimal choice without recursion
- The burden of greedy algorithms is in the proof!

Before We Begin

Theorem 1

Testing

Algorithmic Pizza

- ullet You are the manager and have n pizza orders
- Making a pizza is divided in two stages:
 - i. Preparation
 - ii. Baking
- ullet Order i takes p_i time in prep and b_i time in baking
- Your oven is infinitely large, but you can only prep one pizza at a time
- What order should you prep the pizza such that the last pizza comes out of the oven as soon as possible?

- It is tempting to start with an algorithm, then prove it
 - However, proofs can guide our algorithms instead
- Notice this is a permutation problem
 - Therefore, what happens if we swap adjacent pizza orders?
- ullet Let's look at two consecutive orders i and i+1

- ullet Let s_i be how long it takes us to get to order i
 - \circ How long does pizza i and i+1 take to get out of the oven?
 - What if we were to flip it?
- How do we then use this information to find the optimal ordering?

- ullet Consider if pizza i is prepared then pizza i+1
 - \circ Pizza i comes out after: $s_i + p_i + b_i$
 - \circ Pizza i+1 comes out after: $s_i+p_i+p_{i+1}+b_{i+1}$
- ullet Consider if pizza i+1 is prepared then pizza i
 - \circ Pizza i comes out after: $s_i + p_i + p_{i+1} + b_i$
 - \circ Pizza i+1 comes out after: $s_i+p_{i+1}+b_{i+1}$

- Let's see which pizza comes out earlier in the first configuration
 - \circ Which is larger: $s_i + p_i + b_i$ or $s_i + p_i + p_{i+1} + b_{i+1}$
 - $\circ~$ We can simplify the above by canceling like terms: b_i or $p_{i+1}+b_{i+1}$
 - $\circ\,$ The above depends on the value of the variables, so let's consider when $b_i < b_{i+1}$
 - \circ Then we know that $b_i < p_{i+1} + b_{i+1},$ meaning pizza i+1 takes longer
 - Therefore, we take the time it takes for the longer pizza and compare it to the others

- ullet Therefore, we compare $s_i+p_i+p_{i+1}+b_{i+1}$ to the times for when pizza i+1 is prepared first
- ullet Let's first compare with the time of pizza i (when pizza i+1 is prepared first)
 - $egin{array}{l} \circ \ s_i + p_i + p_{i+1} + b_{i+1} \ ext{and} \ s_i + p_i + p_{i+1} + b_i \end{array}$
 - \circ Simplified for comparison we get, b_{i+1} and b_i
 - \circ So we know that preparing pizza i first takes longer in this comparison

- Now let's compare with the time of pizza i+1 (when pizza i+1 is prepared first)
 - $egin{array}{l} \circ \ s_i + p_i + p_{i+1} + b_{i+1} \ ext{and} \ s_i + p_{i+1} + b_{i+1} \end{array}$
 - \circ Simplified for comparison we get, $p_i + b_{i+1}$ and b_{i+1}
 - \circ So again, preparing pizza i first takes longer here as well
- Conclusion: When $b_i < b_{i+1}$, preparing pizza i first always takes longer
- ullet The same logic follows for $b_i>b_{i+1}$

Interval Scheduling Approximation

- Given a set of intervals, find the largest subset of non-overlapping intervals
- Algorithm:
 - Pick the shortest interval
 - Discard any overlapping intervals
 - Repeat until we have no more intervals
- Prove this algorithm is a 2-approximation

Interval Scheduling Approximation

- Consider the optimal solution and compare it to our own
 - What properties does the optimal solution have compared to our own?
 - The magic number to look for is 2
- What happens when the optimal solution has more intervals than the greedy
 - Consider an interval that invalidates more than 1 interval
 - Can it invalidate more than 2?
 - No, because of the middle interval!

Interval Scheduling Approximation

- For each interval, it can overlap at most 2 optimal intervals
- Therefore, our solution is at most half of the optimal solution
- Thus making it a 2 approximation